

Request Information

# Methods of Improving Cancer Immunotherapy

Tech ID: 34444 / UC Case 2022-599-0

#### **ABSTRACT**

Researchers at the University of California, Davis have developed methods that combine immunotherapeutic agents with dual inhibitors to enhance cancer treatment efficacy and prolong patient survival.

## **FULL DESCRIPTION**

This technology provides methods for preventing, suppressing, or treating cancer by administering at least one immunotherapeutic agent alongside a dual inhibitor of COX-2 and soluble epoxide hydrolase (sEH), or an sEH inhibitor alone. The approach can include immune checkpoint inhibitors targeting PD-1, PD-L1, LAG-3, or CTLA-4, and may be combined with chemotherapeutic agents or dietary modifications involving high omega-3 or omega-6 intake. These methods are applicable to a wide range of cancers including bladder, ovarian, breast, and lung cancers, aiming to improve immunotherapy effectiveness and patient outcomes.

# **APPLICATIONS**

- ▶ Oncology therapies targeting bladder, breast, ovarian, lung, and other cancers.
- ► Combination cancer immunotherapies.
- ▶ Pharmaceutical development of dual COX-2 and sEH inhibitors.
- ▶ Immune checkpoint inhibitor therapies.
- ▶ Adjunct cancer treatment involving nutritional interventions.

# **FEATURES/BENEFITS**

- ▶ Enhances the effectiveness of existing immunotherapies.
- Prolongs survival in cancer patients.
- ▶ Modulates immune response through dual inhibition of COX-2 and sEH.
- ► Enables flexible treatment by combining immune checkpoint inhibitors with chemotherapy and dietary approaches.
- ▶ Applies treatment strategies across multiple cancer types.
- ▶ Improves immunotherapy response rates in cancers with high non-responsiveness (e.g., bladder cancer).
- ▶ Reduces toxicity associated with immunotherapy.
- Overcomes resistance to immune checkpoint inhibitors.
- ▶ Provides alternative options for patients unresponsive to existing treatments.

# **PATENT STATUS**

| Country                  | Туре                         | Number      | Dated      | Case     |
|--------------------------|------------------------------|-------------|------------|----------|
| United States Of America | <b>Published Application</b> | 20250205217 | 06/26/2025 | 2022-599 |

# CONTACT

Amir J. Kallas ajkallas@ucdavis.edu tel: .



# **INVENTORS**

- ► Hammock, Bruce D.
- ► Hwang, Sung Hee

# OTHER INFORMATION

# **KEYWORDS**

cancer, chemotherapy,
checkpoint inhibitors,
COX-2, immunotherapy,
immune checkpoint,
soluble epoxide
hydrolase, sEH inhibitor,
treatment, omega-3

#### **CATEGORIZED AS**

- Medical
  - ▶ Disease: Cancer
  - Therapeutics

## **RELATED CASES**

2022-599-0

## ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ▶ Method of Preventing Bone Loss and Periodontal Disease
- ► Multi-Target Inhibitors for Pain Treatment
- ► Improved Dioxin Detection and Measurement
- ▶ Detection System for Small Molecules
- ▶ Small Molecule sEH Inhibitors to Treat Alpha-Synuclein Neurodegenerative Disorders
- ► Soluble Epoxide Hydrolase-Conditioned Stem Cells for Cardiac Cell-Based Therapy
- ▶ Targeting Cancer Cachexia with Soluble Epoxide Hydrolase Inhibitors
- ▶ Beneficial Effects of Novel Inhibitors of Soluble Epoxide Hydrolase as Adjuvant Treatment for Cardiac Cell-Based Therapy
- ► Antibodies: Bacillus Delta Endotoxin PAbs
- ▶ Antibodies: Bromacil Herbicide PAbs
- Potential Therapeutic Agent for Laminitis in Equines
- ▶ Novel Neuropathy Treatment Using Soluble Epoxide Inhibitors
- ▶ Novel and Specific Inhibitors of p21
- ► Antibodies for Pseudomonas (P.) aeruginosa
- ▶ Inhibitor for Preventing the Onset of Neurodevelopmental Disorders
- ► Antibodies: Urea Herbicide Pabs
- ▶ Bioavailable Dual sEH/PDE4 Inhibitor for Inflammatory Pain
- ► Chemical Synthesis of Lipid Mediator 22-HDoHE and Structural Analogs
- ► Antibodies: Triazine Herbicide Pabs
- ▶ Optimized Non-Addictive Biologics Targeting Sodium Channels Involved In Pain Signaling
- ▶ Soluble Epoxide Hydrolase Inhibitors For The Treatment Of Arrhythmogenic Cardiomyopathy And Related Diseases

Tel:

▶ A New Pharmaceutical Therapy Target for Depression and Other Central Nervous System Diseases

**University of California, Davis Technology Transfer Office** 1 Shields Avenue, Mrak Hall 4th Floor,

Davis, CA 95616

530.754.8649

© 2025, The Regents of the University of California

techtransfer@ucdavis.edu

Terms of use **Privacy Notice** 

https://research.ucdavis.edu/technology-

transfer/

Fax:

530.754.7620