Request Information Permalink

OPTIMIZATION FOR MULTI-OBJECTIVE ENVIRONMENTAL POLICYMAKING

Tech ID: 34264 / UC Case 2026-025-0

CONTACT

Michael Cohen mcohen@berkeley.edu tel: 510-643-4218.

INVENTORS

» Apte, Joshua S.

OTHER INFORMATION

CATEGORIZED AS

- » Environment
 - » Other
 - » Remediation
 - » Sensing
- » Engineering
 - >> Engineering
 - » Robotics and Automation
- » Research Tools
 - » Bioinformatics
 - Screening Assays
- » Sensors & Instrumentation
 - >> Environmental Sensors
 - » Scientific/Research

RELATED CASES

2026-025-0

PATENT STATUS

Patent Pending

BRIEF DESCRIPTION

Traditional environmental policymaking often struggles to efficiently target interventions to achieve multiple, complex air quality goals simultaneously across a geographic area. This innovation, developed by UC Berkeley researchers, addresses this challenge by providing a sophisticated, multi-objective optimization method for targeted reduction of air pollution. The method generates a comprehensive mitigation pathway by integrating several modules: a forward module to model pollutant concentrations, a target concentration surface that defines the policy goals, a prioritization module to assess uncertainty and importance via a prioritization covariance matrix, and a Bayesian inversion module to estimate optimum emissions required to meet the target. This systematic, data-driven approach culminates in a mitigation pathway that guides the performance of specific pollution control measures, offering a significant advantage over conventional, less targeted policy-making by ensuring resources are directed where they will have the maximum environmental impact.

SUGGESTED USES

>>

To design targeted and efficient environmental policies for reducing multiple air pollutants in specific geographic regions.

>>

To provide optimum emissions estimates required to meet predefined air quality standards.

>>

To generate actionable mitigation pathways for pollution control measures (e.g., regulating specific sources).

>>

To optimize resource allocation for environmental cleanup and policy implementation.

ADVANTAGES

>>

Provides an optimized, multi-objective solution for complex environmental policymaking.

>>

Integrates forward modeling (concentration prediction) with Bayesian inversion (emissions estimation) for robust results.

>>

Generates a mitigation pathway that translates data into concrete, actionable pollution control measures.

>>

Accounts for uncertainty and prioritization through the use of a covariance matrix.

>>

Enables the targeted reduction of one or more specific pollutants.

RELATED MATERIALS

University of California, Berkeley Office of Technology Licensing

2150 Shattuck Avenue, Suite 510, Berkeley,CA 94704

Tel: 510.643.7201 | Fax: 510.642.4566

https://ipira.berkeley.edu/ | otl-feedback@lists.berkeley.edu

© 2025, The Regents of the University of California

Terms of use | Privacy Notice